By Topic

Global stability of a class of discrete-time recurrent neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sanqing Hu ; Dept. of Autom. & Comput.-Aided Eng., Chinese Univ. of Hong Kong, Shatin, China ; Jun Wang

This paper presents several analytical results on global asymptotic stability (GAS) and global exponential stability (GES) for the equilibrium states of a general class of discrete-time recurrent neural networks (DTRNNS) with asymmetric connection weight matrices and globally Lipschitz continuous and monotone nondecreasing activation functions. A necessary and sufficient condition is formulated to guarantee the existence and uniqueness of equilibria of such DTRNNS. The obtained results are less restrictive, different from, and improve upon the existing ones on GAS and GES of neural networks with special classes of activation functions.

Published in:

Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on  (Volume:49 ,  Issue: 8 )