Cart (Loading....) | Create Account
Close category search window
 

The SOF-PID controller for the control of a MIMO robot arm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kazemian, H.B. ; London Metropolitan Univ., UK

The application of a self-organizing fuzzy proportional-integral-derivative (SOF-PID) controller to a multiple-input-multiple-output (MIMO) nonlinear revolute-joint robot arm is studied in this paper. The SOF controller is a learning supervisory controller, making small changes to the values of the PID gains while the system is in operation. In effect, the SOF controller replaces an experienced human operator, which otherwise would have readjusted the PID gains during the system operation. The three PID gains are tuned using classical tuning techniques prior to the application of the SOF controller at the supervisory level. Two trajectories of step input and path tracking were applied to the SOF-PID controller at the setpoint. For comparison purposes, the same experiments were repeated by using the self-organizing fuzzy controller (SOFC) and the PID controller subject to the same information supplied at the setpoint. For the step input, the SOF-PID controller produced a aster rise time, a smaller steady state error, and an insignificant overshoot than the SOFC and the PID controller. For the path tracking experiments, better results were obtained.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:10 ,  Issue: 4 )

Date of Publication:

Aug 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.