By Topic

Obtaining silicide free spacers by optimizing sputter etch for deep submicron CMOS processes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kamal, A.H.M. ; Nat. Semicond. Corp., Santa Clara, CA, USA ; Argenti, N.S. ; Blair, C.S.

In this paper, we have shown that the sputter etch before cobalt deposition during the silicide processing of a deep submicron CMOS device fabrication needs to be optimized in order to eliminate a detrimental origin of gate (G) to source (S)/drain (D) bridging. It is known that Co cannot reduce even a thin layer of native oxide. Therefore, it is necessary to ensure that Co is deposited on a very clean Si surface. To ensure this, an in-situ sputter etch is commonly conducted before Co deposition. It is observed that this sputter etch process can sputter Si from the S/D area and deposit them on the sidewall spacer (SWS). This sputtered Si in turn will react with deposited Co and form silicide. The worst case leakage currents from poly-Si to composite for long (10 m) and narrow (0.18 micron) poly lines are shown to be on the order of milliampere. Transmission electron microscope (TEM) micrographs included show the existence of cobalt silicide layers (∼8 nm thick) over sidewall spacer. The silicide thickness on the sidewall spacer is correlated with resistance value calculated from current and voltage (I-V) measurements. The need for optimizing the sputter etch recipe has been validated by TEM and I-V measurements.

Published in:

Semiconductor Manufacturing, IEEE Transactions on  (Volume:15 ,  Issue: 3 )