By Topic

Imaging of thoracic blood volume changes during the heart cycle with electrical impedance using a linear spot-electrode array

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. E. Hoetink ; Dept. of Clinical Phys. & Informatics, Vrije Univ., Amsterdam, Netherlands ; T. J. C. Faes ; J. T. Marcus ; H. J. J. Kerkkamp
more authors

Electrical impedance (EI) measurements conducted on the thorax contain useful information about the changes in blood volume that occur in the thorax during the heart cycle. The aim of this paper is to present a new (tomographic-like) method to obtain this relevant information with electrical impedance measurements, using a linear electrode array. This method is tested on three subjects and the results are compared with results, obtained from magnetic resonance cine-images showing the cross-sectional surface area changes of the aorta, the vena cava, the carotid arteries, and the heart. This paper shows that the different sources of the thoracic EI waveform may be separated in time and location on the thoracic surface and that aortic volume changes may be estimated accurately.

Published in:

IEEE Transactions on Medical Imaging  (Volume:21 ,  Issue: 6 )