By Topic

Electrical impedance spectroscopy of the breast: clinical imaging results in 26 subjects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Kerner, T.E. ; Thayer Sch. of Eng., Dartmouth Coll., Hanover, NH, USA ; Paulsen, K.D. ; Hartov, A. ; Soho, S.K.
more authors

Electrical impedance spectroscopy (EIS) is a potential, noninvasive technique to image women for breast cancer. Studies have shown characteristic frequency dispersions in the electrical conductivity and permittivity of malignant versus normal tissue. Using a multifrequency EIS system, we imaged the breasts of 26 women. All patients had mammograms ranked using the American College of Radiology (ACR) BIRADS system. Of the 51 individual breasts imaged, 38 were ACR 1 negative, six had ACR 4-5 suspicious lesions, and seven had ACR 2 benign findings such as fibroadenomas or calcifications. A radially translatable circular array of 16 Ag/AgCl electrodes was placed around the breast while the patient lay prone. We applied trigonometric voltage patterns at ten frequencies between 10 and 950 kHz. Anatomically coronal images were reconstructed from this data using nonlinear partial differential equation methods. Typically, ACR 1-rated breasts were interrogated in a single central plane whereas ACR 2-5-rated breasts were imaged in multiple planes covering the region of suspicion. In general, a characteristic homogeneous image emerged for mammographically normal cases while focal inhomogeneities were observed in images from women with malignancies. Using a specific visual criterion, EIS images identified 83% of the ACR 4-5 lesions while 67% were detected using a numerical criterion. Overall, multifrequency electrical impedance imaging appears promising for detecting breast malignancies, but improvements must be made before the method reaches its full potential.

Published in:

Medical Imaging, IEEE Transactions on  (Volume:21 ,  Issue: 6 )