By Topic

A spatial-temporal approach for video caption detection and recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaoou Tang ; Dept. of Inf. Eng., Chinese Univ. of Hong Kong, China ; Xinbo Gao ; Jianzhuang Liu ; Hongjiang Zhang

We present a video caption detection and recognition system based on a fuzzy-clustering neural network (FCNN) classifier. Using a novel caption-transition detection scheme we locate both spatial and temporal positions of video captions with high precision and efficiency. Then employing several new character segmentation and binarization techniques, we improve the Chinese video-caption recognition accuracy from 13% to 86% on a set of news video captions. As the first attempt on Chinese video-caption recognition, our experiment results are very encouraging.

Published in:

IEEE Transactions on Neural Networks  (Volume:13 ,  Issue: 4 )