By Topic

Learning similarity measure for natural image retrieval with relevance feedback

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Guo-Dong Guo ; Microsoft Res. China, Beijing, China ; Jain, A.K. ; Wei-Ying Ma ; Hong-Jiang Zhang

A new scheme of learning similarity measure is proposed for content-based image retrieval (CBIR). It learns a boundary that separates the images in the database into two clusters. Images inside the boundary are ranked by their Euclidean distances to the query. The scheme is called constrained similarity measure (CSM), which not only takes into consideration the perceptual similarity between images, but also significantly improves the retrieval performance of the Euclidean distance measure. Two techniques, support vector machine (SVM) and AdaBoost from machine learning, are utilized to learn the boundary. They are compared to see their differences in boundary learning. The positive and negative examples used to learn the boundary are provided by the user with relevance feedback. The CSM metric is evaluated in a large database of 10009 natural images with an accurate ground truth. Experimental results demonstrate the usefulness and effectiveness of the proposed similarity measure for image retrieval.

Published in:

Neural Networks, IEEE Transactions on  (Volume:13 ,  Issue: 4 )