By Topic

A predictive fatigue model. II. Predicting the effect of resting times on fatigue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Ding ; Interdisciplinary Graduate Program in Biomech. & Movement Sci., Delaware Univ., Newark, DE, USA ; Wexler, A.S. ; Binder-Macleod, S.A.

For pt. I see ibid., vol. 10, no. 1, p. 48-58 (2002). We have recently developed a force- and fatigue-model system that accurately predicted the effect of stimulation frequency on muscle fatigue (see pt. I). The data used to test the model were produced by stimulation trains with resting times of 500 ms. Because the resting times between stimulation trains affect muscle fatigue, this study tested the model's ability to predict the effect of resting times on fatigue. In addition, because this study included different subjects than those used to develop the model, the validity of the model could be tested. Data were collected from human quadriceps femoris muscles using fatigue protocols that included resting times of 500, 750, or 1000 ms. Our results showed that the model predicted fatigue as being a decreasing function of resting time, which was consistent with experimental data. Reliability tests between the experimental data and predictions showed interclass correlation coefficients of 0.97, 0.95, and 0.81 for the initial, final, and percentage decline in peak forces, respectively, suggesting strong agreement between the experimental data and the predictions by the model. The success of our current force- and fatigue-model system helps to validate the model and suggests its potential use in identifying the optimal activation pattern during clinical application of functional electrical stimulation.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 1 )