By Topic

A predictive fatigue model. I. Predicting the effect of stimulation frequency and pattern on fatigue

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun Ding ; Interdisciplinary Graduate Program in Biomech. & Movement Sci., Delaware Univ., Newark, DE, USA ; Wexler, A.S. ; Binder-Macleod, S.A.

Previously we developed a mathematical force- and fatigue-model system that could predict fatigue produced by a wide range of frequencies and pulse patterns. However, the models tended to overestimate the forces produced by higher frequency trains. This paper presents modifications to our previously developed force- and fatigue-model system to improve the accuracy in predicting forces during repetitive activation of human skeletal muscle. By comparing the predictions produced by the modified force and fatigue models to those by our previous models, the modification appears to be successful. The current force- and fatigue-model system accounts for about 93% variance in experimental data produced by fatigue protocols consisting of trains with a wide range of frequencies and pulse patterns. In addition, the present models successfully predict the effect of stimulation frequency and pulse pattern on muscle fatigue. The success of our current force- and fatigue-model system suggests its potential use in helping to identify the optimal activation pattern to use during the clinical application of functional electrical stimulation.

Published in:

Neural Systems and Rehabilitation Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 1 )