By Topic

SiC microwave power technologies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Clarke, R.C. ; Compound Semicond. Res. Sci. & Technol. Center, Northrop Grumman Corp., Baltimore, MD, USA ; Palmour, J.W.

Two SiC transistors that are investigated for microwave power applications are the 4H-SiC static induction transistor (SIT) and the 4H-SiC metal-semiconductor field-effect transistor (MESFET). Ultrahigh frequency 4H-SiC SITs have demonstrated record-breaking pulsed power per package (900 W) with excellent associated power-added efficiency (PAE) of 78%. S band 4H-SiC MESFETs have shown a record power-density of 5.6 W/mm and 36% PAE, as well as 80 W continuous-wave (CW) power (1.6 W/mm), with an associated PAE of 38%. X-band MESFET power density of 4.3 W/mm was obtained for exploratory CW devices. These performance gains are afforded by the advantageous material properties of silicon carbide. SiC SIT technology offers many military system advantages including lower cost, lower weight, higher power and high temperature of operation and higher efficiency transmitters with minimal cooling requirements. SiC RF MESFET's and circuits are candidates for use in efficient linear transmitters for commercial and military communications.

Published in:

Proceedings of the IEEE  (Volume:90 ,  Issue: 6 )