By Topic

Analysis of a multilevel multicell switch-mode power amplifier employing the "flying-battery" concept

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Ertl ; Power Electron. Sect., Vienna Univ. of Technol., Austria ; J. W. Kolar ; F. C. Zach

This paper presents a novel switch-mode power amplifier based on a multicell multilevel circuit topology. The total output voltage of the system is formed by series connection of several switching cells having a low DC-link voltage. Therefore, the cells can be realized using modern low-voltage high-current power MOSFET devices and the DC link can easily be buffered by rechargeable batteries or "super" capacitors to achieve very high amplifier peak output power levels ("flying-battery" concept). The cells are operated in a phase-shifted interleaved pulsewidth-modulation mode, which, in connection with the low partial voltage of each cell, reduces the filtering effort at the output of the total amplifier to a large extent and, consequently, improves the dynamic system behavior. The paper describes the operating principle of the system, analyzes the fundamental relationships being relevant for the circuit design, and gives guidelines for the dimensioning of the control circuit. Furthermore, simulation results as well as results of measurements taken from a laboratory setup are presented.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:49 ,  Issue: 4 )