Cart (Loading....) | Create Account
Close category search window

System identification of electronic nose data from cyanobacteria experiments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Searle, G.E. ; Sch. of Eng., Warwick Univ., Coventry, UK ; Gardner, J.W. ; Chappell, M.J. ; Godfrey, K.R.
more authors

Linear black-box modeling techniques are applied to both steady state and dynamic data gathered from two electronic nose experiments involving cyanobacteria cultures. Analysis of the data from a strain identification experiment shows that very simple low order MISO black box model structures are able to produce very high success rates (up to 100%) when identifying the toxic strain of cyanobacteria. This is comparable with the best success rates for steady state data reported elsewhere using artificial neural networks. Analysis of data from a growth phase identification experiment using MIMO black-box models produces success rates of 82.3% for steady state data and 76.6% for dynamic data. This compares poorly with the best performing nonlinear artificial neural networks, which obtained a 95.1% success rate on the same data. This demonstrates the limitations of these linear techniques when applied to more difficult problems.

Published in:

Sensors Journal, IEEE  (Volume:2 ,  Issue: 3 )

Date of Publication:

Jun 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.