By Topic

Adaptive detector arrays for optical communications receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. A. Vilnrotter ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA ; M. Srinivasan

An optimal adaptive array receiver for use in groundbased optical communications is investigated. Kolmogorov phase screen simulations are used to generate realistic focal-plane distributions of the received optical fields in the presence of turbulence. The array detection concept reduces interference from background radiation by effectively assigning higher confidence levels at each instant of time to those detector elements that contain significant signal energy and suppressing those that do not. A simpler suboptimum structure that replaces the continuous weighting of the optimal receiver by a hard decision over each detector element is also described. It is shown that, for photon counting receivers observing Poisson distributed signals, performance improvements of up to 5 dB can be obtained over conventional single-detector photon counting receivers when observing turbulent optical fields in high background environments.

Published in:

IEEE Transactions on Communications  (Volume:50 ,  Issue: 7 )