Cart (Loading....) | Create Account
Close category search window
 

Multiuser channel estimation and tracking for long-code CDMA systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhashyam, S. ; Dept. of Electr. & Comput. Eng., Rice Univ., Houston, TX, USA ; Aazhang, B.

Channel estimation techniques for code-division multiple access (CDMA) systems need to combat multiple access interference (MAI) effectively. Most existing estimation techniques are designed for CDMA systems with short repetitive spreading codes. However, current and next-generation wireless systems use long spreading codes whose periods are much larger than the symbol duration. We derive the maximum-likelihood channel estimate for long-code CDMA systems over multipath channels using training sequences and approximate it using an iterative algorithm to reduce the computational complexity in each symbol duration. The iterative channel estimate is also shown to be asymptotically unbiased. The effectiveness of the iterative channel estimator is demonstrated in terms of squared error in estimation as well as the bit error rate performance of a multistage detector based on the channel estimates. The effect of error in decision feedback from the multistage detector (used in the absence of training sequences) is also shown to be negligible for reasonable feedback error rates using simulations. The proposed iterative channel estimation technique is also extended to track slowly varying multipath fading channels using decision feedback. Thus, an MAI-resistant multiuser channel estimation and tracking scheme with reasonable computational complexity is derived for long-code CDMA systems over multipath fading channels.

Published in:

Communications, IEEE Transactions on  (Volume:50 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.