By Topic

Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Escamilla-Ambrosio, P.J. ; Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, UK ; Mort, N

In this work a novel multi-sensor data fusion (MSDF) architecture is presented. First, each measurement-vector coming from each sensor is fed to a fuzzy logic-based adaptive Kalman filter (FL-AKF); thus there are N sensors and N FL-AKFs working in parallel. The adaptation in each FL-AKF is, in the sense of dynamically tuning the measurement noise covariance matrix R, employing a fuzzy inference system (FIS) based on a covariance matching technique. A second FIS, called a fuzzy logic assessor (FLA), monitors and assesses the performance of each FL-AKF. The FLA assigns a degree of confidence, a number on the interval [0, 1], to each of the FL-AKF outputs. Finally, a defuzzification scheme obtains the fused state-vector estimate based on confidence values. The effectiveness and accuracy of this approach is demonstrated using a simulated example. Two defuzzification methods are explored and compared, and results show good performance of the proposed approach.

Published in:

Information Fusion, 2002. Proceedings of the Fifth International Conference on  (Volume:2 )

Date of Conference:

8-11 July 2002