By Topic

Improving personal identification accuracy using multisensor fusion for building access control applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Osadciw, L. ; Dept. of Electr. Eng. & Comput. Sci., Syracuse Univ., NY, USA ; Varshney, P. ; Veeramachaneni, K.

This paper discusses a multimodal biometric sensor fusion approach for controlling building access. The motivation behind using multimodal biometrics is to improve universality and accuracy of the system. A Bayesian framework is implemented to fuse the decisions received from multiple biometric sensors. The system accuracy improves for a subset of decision fusion rules. The optimal rule is a function of the error cost and a priori probability of an intruder. This Bayesian framework formalizes the design of a system that can adaptively increase or reduce the security level. This is important to systems designed for varying security needs and user access requirements. The additional biometric modes and variable error costs give the system adaptability improving system acceptability. This paper presents the framework using three different biometric systems: voice, face, and hand biometric systems.

Published in:

Information Fusion, 2002. Proceedings of the Fifth International Conference on  (Volume:2 )

Date of Conference:

8-11 July 2002