By Topic

An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Engheta, N. ; Dept. of Electr. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA

We present and analyze theoretically some ideas for thin one-dimensional (1D) cavity resonators in which a combination of a conventional dielectric material and a metamaterial possessing negative permittivity and permeability has been inserted. It is shown that a slab of metamaterial with negative permittivity and permeability can act as a phase compensator/conjugator and, thus, by combining such a slab with another slab made of a conventional dielectric material, one can, in principle, have a 1D cavity resonator whose dispersion relation may not depend on the sum of thicknesses of the interior materials filling this cavity, but instead it depends on the ratio of these thicknesses. In other words, one can, in principle, conceptualize a 1D cavity resonator with the total thickness far less than the conventional /spl lambda//2. Mathematical steps and physical intuitions relevant to this problem are presented.

Published in:

Antennas and Wireless Propagation Letters, IEEE  (Volume:1 ,  Issue: 1 )