Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Anomaly detection and classification for hyperspectral imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chein-I Chang ; Dept. of Comput. Sci. & Electr. Eng., Maryland Univ., Baltimore, MD, USA ; Shao-Shan Chiang

Anomaly detection becomes increasingly important in hyperspectral image analysis, since hyperspectral imagers can now uncover many material substances which were previously unresolved by multispectral sensors. Two types of anomaly detection are of interest and considered in this paper. One was previously developed by Reed and Yu to detect targets whose signatures are distinct from their surroundings. Another was designed to detect targets with low probabilities in an unknown image scene. Interestingly, they both operate the same form as does a matched filter. Moreover, they can be implemented in real-time processing, provided that the sample covariance matrix is replaced by the sample correlation matrix. One disadvantage of an anomaly detector is the lack of ability to discriminate the detected targets from another. In order to resolve this problem, the concept of target discrimination measures is introduced to cluster different types of anomalies into separate target classes. By using these class means as target information, the detected anomalies can be further classified. With inclusion of target discrimination in anomaly detection, anomaly classification can be implemented in a three-stage process, first by anomaly detection to find potential targets, followed by target discrimination to cluster the detected anomalies into separate target classes, and concluded by a classifier to achieve target classification. Experiments show that anomaly classification performs very differently from anomaly detection.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 6 )