Cart (Loading....) | Create Account
Close category search window
 

Retrieval of crop biomass and soil moisture from measured 1.4 and 10.65 GHz brightness temperatures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Shou-Fang Liu ; Dept. of Ind. Design, Oriental Inst. of Technol., Taipei, Taiwan ; Yuei-An Liou ; Wen-Jun Wang ; Wigneron, J.-P.
more authors

Physically based land surface process/radiobrightness (LSP/R) models may characterize well the relationship between radiometric signatures and surface parameters. They can be used to develop and improve the means of sensing surface parameters by microwave radiometry. However, due to a lack in the skill to properly understand the behavior of the data, a statistical approach is often adopted. In this paper, we present the retrieval of wheat plant water content (PWC) and soil moisture content (SMC) profiles from the measured H-polarized and V-polarized brightness temperatures at 1.4 (L-band), and 10.65 (X-band) GHz by an error propagation learning back propagation (EPLBP) neural network. The PWC is defined as the total water content in the vegetation. The brightness temperatures were taken by the PORTOS radiometer over wheat fields through three month growth cycles in 1993 (PORTOS-93) and 1996 (PORTOS-96). Note that, through the neural network, there is no requirement of ancillary information on the complex surface parameters such as vegetation biomass, surface temperature, and surface roughness, etc. During both field campaigns, the L-band radiometer was used to measure brightness temperatures at incident angles from 0 to 50° at L-band and at an incident angle of 50° at X-band. The SMC profiles were measured to the depths of 10 cm in 1993 and 5 cm in 1996. The wheat was sampled approximately once a week in 1993 and 1996 to obtain its dry and wet biomass (i.e., PWC). The EPLBP neural network was trained with observations randomly chosen from the PORTOS-93 data, and evaluated by the remaining data from the same set. The trained neural network is further evaluated with the PORTOS-96 data.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:40 ,  Issue: 6 )

Date of Publication:

Jun 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.