Cart (Loading....) | Create Account
Close category search window
 

The effects of temperature and humidity aging on the contact resistance of novel electrically conductive adhesives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Van Wuytswinkel, G. ; Emerson & Cuming, Westerlo, Belgium ; Dreezen, G. ; Luyckx, G.

Conductive Surface Mount Adhesives (CSMAs) are an alternative to traditional solders used in the electronics industry. CSMAs provide an environmentally friendly alternative to conventional Sn/Pb metal solders offering additional attractive technical advantages including low temperature processing, fine pitch capability and better resistance to thermal cycling. The two major limitations of CSMAs have been their instability on common electronic metals such as copper and Sn/Pb solder and their performance under impact testing. Recent experimental work published by National Starch Corporate Research in collaboration with Georgia Institute of Technology has shown that the unstable contact resistance of CSMAs on copper and solder is due to electrochemical corrosion of these metals under adverse conditions. Based on the above fundamental understandings, Emerson & Cuming have been developing some new and unique formulas which exhibit exceptional contact resistance stability on previously unstable metal surfaces including OSP copper, Sn/Pb alloys and even 100 percent tin. Much progress has also been made in the area of mechanical performance. Recent advances in contact resistance stability have been incorporated along with the advances in impact performance to create novel materials. This paper examines the effects of thermoshock testing, high temperature aging and humidity aging on the contact resistance and the adhesion of these new formulas.

Published in:

Polymers and Adhesives in Microelectronics and Photonics, 2002. POLYTRONIC 2002. 2nd International IEEE Conference on

Date of Conference:

2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.