By Topic

Analysis of a complexity-based pruning scheme for classification trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. B. Nobel ; Dept. of Stat., North Carolina Univ., Chapel Hill, NC, USA

A complexity-based pruning procedure for classification trees is described, and bounds on its finite sample performance are established. The procedure selects a subtree of a (possibly random) initial tree in order to minimize a complexity penalized measure of empirical risk. The complexity assigned to a subtree is proportional to the square root of its size. Two cases are considered. In the first, the growing and pruning data sets are identical, and in the second, they are independent Using the performance bound, the Bayes risk consistency of pruned trees obtained via the procedure is established when the sequence of initial trees satisfies suitable geometric and structural constraints. The pruning method and its analysis are motivated by work on adaptive model selection using complexity regularization.

Published in:

IEEE Transactions on Information Theory  (Volume:48 ,  Issue: 8 )