By Topic

A competitive Neyman-Pearson approach to universal hypothesis testing with applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
E. Levitan ; Dept. of Electr. Eng., Technion-Israel Inst. of Technol., Haifa, Israel ; N. Merhav

The problem of hypothesis testing for parametric information sources whose parameters are not explicitly known is considered. A new, modified version of the Neyman-Pearson criterion of optimality, where the uniform constraint on exponential rate of the false-alarm probability is replaced by one that depends on unknown values of the parameters, is proposed. An optimal universal decision rule, based on Kullback-Leibler divergence, is developed and shown to be efficient in the sense of achieving exponential decay of both misdetection and false-alarm probabilities for all values of unknown parameters, whenever such an efficient decision rule exists at all. Furthermore, necessary and sufficient conditions for the existence of such efficient universal tests are established and the best universally achievable error exponents are presented. Finally, the proposed approach is applied to several important problems in signal processing and communications and compared to the generalized likelihood ratio test (LRT).

Published in:

IEEE Transactions on Information Theory  (Volume:48 ,  Issue: 8 )