By Topic

A prior pertinence evaluation using fuzzy set and Bayes theory for esophagus wall segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
R. Debon ; Dpt. ITI, ENST de Bretagne, Brest, France ; P. H. Lim ; B. Solaiman ; M. Robaszkiewicz
more authors

In this work, our interest is related to the esophagus inner and outer wall segmentation from ultrasound images sequences. We aim to elaborate a general methodology of data mining that coherently links works on data selection and fusion architectures, in order to extract useful information from raw data. In the presented method, based on fuzzy logic, some fuzzy propositions are defined using physicians a priori knowledge. The use of probability distributions, estimated thanks to a learning base, allows the veracity of these propositions to be qualified. This promising idea enables information to be managed through the consideration of both information imprecision and uncertainty. By considering that, the fuzzyfication process is optimized relatively to a given criteria using a genetic algorithm. We conclude this paper with some preliminary results and outline some further works.

Published in:

Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE  (Volume:4 )

Date of Conference: