By Topic

The use of major risk factors for computer-based distinction of diabetic patients with ischemic stroke and without stroke

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
S. O. Merey ; Electron. & Electr. Eng. Dept., Tech. Univ of Istanbul, Turkey ; F. Gurgen ; N. Gurgen

This study proposes a computer-based decision support system to investigate the distinctive factors of diabetes mellitus (DM) with ischemic (non-embolic type) stroke and without stroke. Database consists of a total of 16 features that are collected from 44 diabetic patients. Features include age, gender, duration of diabetes, cholesterol, higher density lipoprotein (HDL), triglicerit levels, neuropathy, nephropathy, retinopathy, peripheral vascular disease (PVD), myocardial infarction (MI) rate, glucose levels, taking medicine, blood pressure. Metric and non-metric features are distinguished. First, the statistics, mean and covariance, of data are estimated and the correlated components are observed. Second, principal component analysis (PCA) is used for major components. Finally, decision making approaches, k-nearest neighbor (k-NN) and MLP, are employed for classification of all the components and major components case. Macrovascular changes emerged as principal distinctive factors of ischemic-stroke in DM. Microvascular changes were generally ineffective discriminators. Recommendations were made according to the rules of evidence-based medicine. Briefly, this case study supports theories of stroke in DM and also concludes that the use of intelligent data analysis improves personalized prevention.

Published in:

Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE  (Volume:4 )

Date of Conference: