By Topic

Assessing the applicability of fault-proneness models across object-oriented software projects

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Briand, L.C. ; Software Quality Eng. Lab., Carleton Univ., Ottawa, Ont., Canada ; Melo, W.L. ; Wust, J.

A number of papers have investigated the relationships between design metrics and the detection of faults in object-oriented software. Several of these studies have shown that such models can be accurate in predicting faulty classes within one particular software product. In practice, however, prediction models are built on certain products to be used on subsequent software development projects. How accurate can these models be, considering the inevitable differences that may exist across projects and systems? Organizations typically learn and change. From a more general standpoint, can we obtain any evidence that such models are economically viable tools to focus validation and verification effort? This paper attempts to answer these questions by devising a general but tailorable cost-benefit model and by using fault and design data collected on two mid-size Java systems developed in the same environment. Another contribution of the paper is the use of a novel exploratory analysis technique - MARS (multivariate adaptive regression splines) to build such fault-proneness models, whose functional form is a-priori unknown. The results indicate that a model built on one system can be accurately used to rank classes within another system according to their fault proneness. The downside, however, is that, because of system differences, the predicted fault probabilities are not representative of the system predicted. However, our cost-benefit model demonstrates that the MARS fault-proneness model is potentially viable, from an economical standpoint. The linear model is not nearly as good, thus suggesting a more complex model is required.

Published in:

Software Engineering, IEEE Transactions on  (Volume:28 ,  Issue: 7 )