By Topic

Fluid-stochastic-event graphs for evaluation and optimization of discrete-event systems with failures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Xiaolan Xie ; INRIA & LGIPM, Metz, France

This paper addresses the performance evaluation and optimization of failure-prone discrete-event systems. We propose a fluid-stochastic-event graph model that is a decision-free Petri net. Tokens are considered as continuous flows. A transition can be in operating state or in failure state. Jumps between failure and operating states do not depend on the firing conditions, and the sojourn time in each state is a random variable of general distribution. For performance evaluation, a set of evolution equations that determines continuous-state variables at epochs of failure/repair events is established. The cumulative firing quantity of each transition is proven to be concave in system parameters, including firing rates and initial marking. Gradient estimators are derived. Finally, an optimization problem of maximizing a concave function of throughput rate and system parameters is addressed

Published in:

IEEE Transactions on Robotics and Automation  (Volume:18 ,  Issue: 3 )