By Topic

Spatial stiffness realization with parallel springs using geometric parameters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kinkwan Choi ; Inf. Technol. Services Dept., Gov. of Hong Kong, China ; Shilong Jiang, ; Zexiang Li

This paper investigates the synthesis of a spatial stiffness matrix using simple line springs. A new algorithm is developed, which enables the selection of constituent springs based on their positions and directions. The constraining space of the line springs is then investigated. It is shown that an isotropic stiffness matrix, in general, can be split into the sum of two rank-3 stiffness matrices. The three line springs of the first matrix can be selected to pass through any arbitrary points in space, while the three line springs of the second stiffness matrix lie on a quadric surface, which is usually a hyperboloid of one sheet

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:18 ,  Issue: 3 )