By Topic

Laser-induced fluorescence detection on multichannel electrophoretic microchips using microprocessor-embedded acousto-optic laser beam scanning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Zhili Huang ; Dept. of Chem., Virginia Univ., Charlottesville, VA, USA ; Lianji Jin ; Sanders, J.C. ; Zheng, Yibin
more authors

An improved method for fast scanning and fluorescence detection on multimicrochannel microchips is presented using acousto-optic-deflection-driven laser-beam scanning. A microprocessor embedded subsystem used in conjunction with LabView program as the human-machine interface for control of laser-beam scanning and data preprocessing allowed faster scanning and addressing speeds to be attained and improved attenuation calibration and the data sampling speed. This system allows for flexible, high-resolution fluorescence detection for multimicrochannel electrophoresis in a manner that can be applied to a number of high-throughput analysis applications. Incorporating an F-theta focusing lens into the optical set-up allowed for a laser spot as small as 10 μm to accurately be addressed to the center of microchannels. With this spot size, it will be possible to further increase the channel density in the scanning range without encountering crosstalk. Using a six-channel microchip (four separation channels, two alignment channels), the simultaneous separation and fluorescence detection of amino acids and DNA digest samples in four channels is illustrated. User-friendly interpretation of the separation data is facilitated not only by a peak alignment/normalization routine developed within the software, but also through improved signal-to-noise ratios obtained through exploitation of signal processing.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:49 ,  Issue: 8 )