By Topic

Finding patterns in three-dimensional graphs: algorithms and applications to scientific data mining

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xiong Wang ; Dept. of Comput. Sci., California State Univ., Fullerton, CA, USA ; Xiong Wang ; Shasha, D. ; Shapiro, B.A.
more authors

Presents a method for finding patterns in 3D graphs. Each node in a graph is an undecomposable or atomic unit and has a label. Edges are links between the atomic units. Patterns are rigid substructures that may occur in a graph after allowing for an arbitrary number of whole-structure rotations and translations as well as a small number (specified by the user) of edit operations in the patterns or in the graph. (When a pattern appears in a graph only after the graph has been modified, we call that appearance "approximate occurrence.") The edit operations include relabeling a node, deleting a node and inserting a node. The proposed method is based on the geometric hashing technique, which hashes node-triplets of the graphs into a 3D table and compresses the label-triplets in the table. To demonstrate the utility of our algorithms, we discuss two applications of them in scientific data mining. First, we apply the method to locating frequently occurring motifs in two families of proteins pertaining to RNA-directed DNA polymerase and thymidylate synthase and use the motifs to classify the proteins. Then, we apply the method to clustering chemical compounds pertaining to aromatic compounds, bicyclicalkanes and photosynthesis. Experimental results indicate the good performance of our algorithms and high recall and precision rates for both classification and clustering

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:14 ,  Issue: 4 )