By Topic

Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
S. S. A. Obayya ; Sch. of Eng., City Univ., London, UK ; B. M. A. Rahman ; K. T. V. Grattan ; H. A. El-Mikati

In this paper, we address accurate computation of complex propagation constants and field distributions of different modes, in general, lossless and lossy optical dielectric waveguides. Using the vector finite-element formulation of the beam propagation method combined with the imaginary distance propagation technique, sequence of both the guided and leaky modes can be accurately calculated. To show the versatility and numerical precision of the proposed technique, we compute the modes of three different three-dimensional (3-D) waveguide structures and compare the results against those of other, different, vector formulations. Further, we present the design of a higher order mode filtering device, based on a 3-D leaky mode optical waveguide

Published in:

Journal of Lightwave Technology  (Volume:20 ,  Issue: 6 )