Cart (Loading....) | Create Account
Close category search window

Full vectorial finite-element-based imaginary distance beam propagation solution of complex modes in optical waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Obayya, S.S.A. ; Sch. of Eng., City Univ., London, UK ; Rahman, B.M.A. ; Grattan, K.T.V. ; El-Mikati, H.A.

In this paper, we address accurate computation of complex propagation constants and field distributions of different modes, in general, lossless and lossy optical dielectric waveguides. Using the vector finite-element formulation of the beam propagation method combined with the imaginary distance propagation technique, sequence of both the guided and leaky modes can be accurately calculated. To show the versatility and numerical precision of the proposed technique, we compute the modes of three different three-dimensional (3-D) waveguide structures and compare the results against those of other, different, vector formulations. Further, we present the design of a higher order mode filtering device, based on a 3-D leaky mode optical waveguide

Published in:

Lightwave Technology, Journal of  (Volume:20 ,  Issue: 6 )

Date of Publication:

Jun 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.