Cart (Loading....) | Create Account
Close category search window

Recursive estimation of the covariance matrix of a compound-Gaussian process and its application to adaptive CFAR detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Conte, Ernesto ; Dipt. di Ingegneria Elettronica e delle Telecomunicazioni, Universita degli Studi di Napoli "Federico II", Italy ; De Maio, Antonio ; Ricci, G.

Adaptive detection of signals embedded in Gaussian or non-Gaussian noise is a problem of primary concern among radar engineers. We propose a recursive algorithm to estimate the structure of the covariance matrix of either a set of Gaussian vectors that share the spectral properties up to a multiplicative factor or a set of spherically invariant random vectors (SIRVs) with the same covariance matrix and possibly correlated texture components. We also assess the performance of an adaptive implementation of the normalized matched filter (NMF), relying on the newly introduced estimate, in the presence of compound-Gaussian, clutter-dominated, disturbance. In particular, it is shown that a proper initialization of the recursive procedure leads to an adaptive NMF with the constant false alarm rate (CFAR) property and that it is very effective to operate in heterogeneous environments of relevant practical interest

Published in:

Signal Processing, IEEE Transactions on  (Volume:50 ,  Issue: 8 )

Date of Publication:

Aug 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.