By Topic

COR: a methodology to improve ad hoc data-driven linguistic rule learning methods by inducing cooperation among rules

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Casillas, J. ; Dept. of Comput. Sci. & Artificial Intelligence, Granada Univ., Spain ; Cordon, O. ; Herrera, F.

This paper introduces a new learning methodology to quickly generate accurate and simple linguistic fuzzy models: the cooperative rules (COR) methodology. It acts on the consequents of the fuzzy rules to find those that are best cooperating. Instead of selecting the consequent with the highest performance in each fuzzy input subspace, as ad-hoc data-driven methods usually do, the COR methodology considers the possibility of using another consequent, different from the best one, when it allows the fuzzy model to be more accurate thanks to having a rule set with the best cooperation. Our proposal has shown good results in solving three different applications when compared to other methods

Published in:

Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on  (Volume:32 ,  Issue: 4 )