Cart (Loading....) | Create Account
Close category search window

Self field measurements by Hall sensors on the SeCRETS long sample CICCs in SULTAN

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ilyin, Yu.A. ; Fac. of Appl. Phys., Twente Univ., Enschede, Netherlands ; Nijhuis, A. ; ten Kate, H.H.J. ; Bruzzone, P.

The aim of this work is to determine the existence and degree of the current unbalance of two types of cable-in-conduit conductors (CICC) of the SeCRETS long sample experiment, and its influence on the conductors' performance. The self-field measurements are performed by using six sets of annular Hall sensors, each containing six sensors, and two linear arrays with ten sensors. The change of the self-field is associated with the redistribution of the transport current between the strands inside the conductor during and after a ramp of current, due to changes of the applied magnetic field or temperature of the conductor. During the DC, AC losses and stability tests, the signals from the Hall sensors were recorded. In DC tests, a clear change of the self-field pattern is observed in the high field region when either current or temperature approached their critical (Ics and Tcs) values. No change in the self-field pattern is observed in the experiments with pulsed fields. The method requires improvements for a reasonable quantitative assessment of the current unbalance in the conductor.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:12 ,  Issue: 1 )

Date of Publication:

Mar 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.