By Topic

Measurements and modeling of soft underlayer materials for perpendicular magnetic recording

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
ChungHee Chang ; Seagate Technol., Fremont, CA, USA ; Plumer, M. ; Brucker, C. ; Chen, D.
more authors

Measurements and modeling of soft magnetic underlayer (SUL) materials for perpendicular magnetic recording application are carried out. The process dependent magnetic properties of FeCoB, CoZrNb, and FeAlN SUL materials on glass and aluminum disk substrates are studied and correlated with spin-stand noise performance. The SUL-induced dc noise amplitude approaches the electronic noise floor for certain material combinations, e.g., FeCoB or CoZrNb on glass, when care is taken to relieve stress-induced perpendicular anisotropy by thermal annealing. Landau-Lifshitz-Gilbert micromagnetics, finite-element method calculations, and a micromagnetic recording model show that write field amplitude, write field gradient, and readback waveform are only slightly impacted by SUL moment in the 1-2 T range. Much more important are the head-to-SUL distance and the write head saturation moment. These results suggest that extremely high SUL moment may not be necessary, which can be leveraged to meet other key practical requirements such as corrosion resistance and manufacturability

Published in:

Magnetics, IEEE Transactions on  (Volume:38 ,  Issue: 4 )