By Topic

An image retrieval system with automatic query modification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
G. Aggarwal ; IBM India Res. Lab., New Delhi, India ; T. V. Ashwin ; S. Ghosal

Most interactive "query-by-example" based image retrieval systems utilize relevance feedback from the user for bridging the gap between the user's implied concept and the low-level image representation in the database. However, traditional relevance feedback usage in the context of content-based image retrieval (CBIR) may not be very efficient due to a significant overhead in database search and image download time in client-server environments. In this paper, we propose a CBIR system that efficiently addresses the inherent subjectivity in user perception during a retrieval session by employing a novel idea of intra-query modification and learning. The proposed system generates an object-level view of the query image using a new color segmentation technique. Color, shape and spatial features of individual segments are used for image representation and retrieval. The proposed system automatically generates a set of modifications by manipulating the features of the query segment(s). An initial estimate of user perception is learned from the user feedback provided on the set of modified images. This largely improves the precision in the first database search itself and alleviates the overheads of database search and image download. Precision-to-recall ratio is improved in further iterations through a new relevance feedback technique that utilizes both positive as well as negative examples. Extensive experiments have been conducted to demonstrate the feasibility and advantages of the proposed system.

Published in:

IEEE Transactions on Multimedia  (Volume:4 ,  Issue: 2 )