Cart (Loading....) | Create Account
Close category search window
 

Design, implementation, and performance evaluation of a detection-based adaptive block replacement scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Jongmoo Choi ; Ubiquix Co., Seoul, South Korea ; Noh, S.H. ; Sang Lyul Min ; Eun-Yong Ha
more authors

A new buffer replacement scheme, called DEAR (detection-based adaptive replacement), is presented for effective caching of disk blocks in the operating system. The proposed DEAR scheme automatically detects block reference patterns of applications and applies different replacement policies to different applications depending on the detected reference pattern. The detection is made by a periodic process and is based on the relationship between block attribute values, such as backward distance and frequency gathered in a period, and the forward distance observed in the next period. This paper also describes an implementation and performance measurement of the DEAR scheme in FreeBSD. The results from performance measurements of several real applications show that, compared with the LRU scheme, the proposed scheme reduces the number of disk I/Os by up to 51 percent, and the response time by up to 35 percent in the case of single application executions. For multiple application executions, the results show that the proposed scheme reduces the number of disk I/Os by up to 20 percent and the overall response time by up to 18 percent

Published in:

Computers, IEEE Transactions on  (Volume:51 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.