By Topic

Learning in Gibbsian fields: how accurate and how fast can it be?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Song Chun Zhu ; Dept. of Stat. & Comput. Sci., California Univ., Los Angeles, CA, USA ; Xiuwen Liu

Gibbsian fields or Markov random fields are widely used in Bayesian image analysis, but learning Gibbs models is computationally expensive. The computational complexity is pronounced by the recent minimax entropy (FRAME) models which use large neighborhoods and hundreds of parameters. In this paper, we present a common framework for learning Gibbs models. We identify two key factors that determine the accuracy and speed of learning Gibbs models: The efficiency of likelihood functions and the variance in approximating partition functions using Monte Carlo integration. We propose three new algorithms. In particular, we are interested in a maximum satellite likelihood estimator, which makes use of a set of precomputed Gibbs models called "satellites" to approximate likelihood functions. This algorithm can approximately estimate the minimax entropy model for textures in seconds in a HP workstation. The performances of various learning algorithms are compared in our experiments

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:24 ,  Issue: 7 )