By Topic

Resonance transmittance through a metal film with subwavelength holes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sarychev, A.K. ; Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA ; Podolskiy, V.A. ; Dykhne, A.M. ; Shalaev, V.M.

An analytical theory for extraordinary light transmittance through an optically thick metal film with subwavelength holes is developed. It is shown that the film transmittance has sharp peaks that are due to the Maxwell-Garnet resonances in the holes. There are localized electric and magnetic resonances resulting in, respectively, dramatically enhanced electric and magnetic fields in the holes. A simple analytical expression for the resonance transmittance is derived that holds for arbitrary hole distribution. It is also shown that there are other types of transmittance resonances, when the holes are arranged into a regular lattice. These resonances occur because of the excitation of surface plasmon polaritons propagating over the film surface. A combination of the two kinds of resonances results in a rich spectral behavior in the extraordinary optical transmittance

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 7 )