By Topic

Transmission and reflection analysis of functional coupled cavity components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Peschel, U. ; Friedrich-Schiller-Univ., Jena, Germany ; Reynolds, A.L. ; Arredondo, B. ; Lederer, F.
more authors

This paper contributes to the ongoing discussion within the photonic crystal community by providing essential insight into the limiting conditions of the coupled cavity waveguiding mechanism. A theoretical and numerical description of coupled defects in PBG crystals is applied to quantify the conditions under which reflections occur within coupled cavity photonic crystal systems. We present an analysis of coupled cavity systems that form a straight and bent waveguide, a Y-shaped symmetric power splitter, and a waveguide incorporating two bends. The method is based on a weak interaction approach; the actual configuration of the defects (chain, lattice, bend, splitter, or anything else) enters the equations as a linear coupling between neighboring defects. The strength of this method is that many solutions of this system are known analytically, and that the band structure as well as the transmission and reflection response of the system can be determined

Published in:

Quantum Electronics, IEEE Journal of  (Volume:38 ,  Issue: 7 )