By Topic

Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
M. Notomi ; NTT Basic Res. Labs., NTT Corp., Tokyo, Japan ; A. Shinya ; K. Yamada ; J. -I. Takahashi
more authors

We experimentally demonstrate the structural tuning of the waveguiding modes of line defects in photonic crystal (PC) slabs. By tuning the defect widths, we realized efficient single-mode waveguides that operate within photonic band gap frequencies in silicon-on-insulator PC slabs. The observed waveguiding characteristics agree very well with three-dimensional finite difference time-domain calculations. We also directly measured the propagation loss of the line defect waveguides and obtained a value of 6 dB/mm

Published in:

IEEE Journal of Quantum Electronics  (Volume:38 ,  Issue: 7 )