By Topic

Liveness-enforcing supervision of bounded ordinary Petri nets using partial order methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
He, K.X. ; Pennie & Edmonds LLP, New York, NY, USA ; Lemmon, M.D.

This paper combines and refines recent results into a systematic way to verify and enforce the liveness of bounded ordinary Petri nets. The approach we propose is based on a partial-order method called network unfolding. Network unfolding maps the original Petri net to an acyclic occurrence net. A finite prefix of the occurrence net is defined to give a compact representation of the original net reachability graph while preserving the causality between net transitions. A set of transition invariants denoted as base configurations is identified in the finite prefix. These base configurations capture all of the fundamental executions of the net system, thereby providing a modular way to verify and synthesize supervisory net systems. This paper proves necessary and sufficient conditions that characterize the original net liveness and the existence of maximally permissive supervisory policies that enforce liveness

Published in:

Automatic Control, IEEE Transactions on  (Volume:47 ,  Issue: 7 )