By Topic

Error performance of noncoherent MFSK with L-diversity on correlated fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Zhang, Q.T. ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China

Noncoherent diversity reception of M-ary frequency-shift keying (MFSK) signals becomes increasingly important due to its widespread use in wireless communications. Its error performance analysis, however, is not available in the literature except for the simple case using binary modulation. We address the problem directly based on the decision variables, ending up with closed-form solutions to both conditional and average error probabilities for a general noncoherent MFSK diversity system operating on Rayleigh, Rician, and Nakagami fading channels. The solutions involve some higher order derivatives, and efficient recursive algorithms have been derived for their calculation. The solutions are very general permitting arbitrary diversity order, symbol size, channel parameters, and antenna-array covariance matrix. Numerical examples are also presented for illustration

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 3 )