Cart (Loading....) | Create Account
Close category search window
 

An adaptive measured-based preassignment scheme with connection-level QoS support for mobile networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaoyuan Luo ; Motorola Electron. PTE Ltd., Singapore, Singapore ; Bo Li ; Thng, I.L.-J. ; Yi-Bing Lin
more authors

This paper presents a new adaptive bandwidth allocation scheme to prevent handoff failure in wireless cellular networks, known as the measurement-based preassignment (MPr) technique. This technique is particularly useful in micro/pico cellular networks which offers quality-of-service (QoS) guarantee against call dropping. The proposed MPr scheme distinguishes itself from the well-known guarded channel (GC) based schemes in that it allows the handoff calls to utilize a prereserved channel pool before competing for the shared channels with new call arrivals. The key advantage of the proposed MPr scheme is that it enables easy derivation of the number of channels that needs to be reserved for handoff based on a predetermined handoff dropping probability, without the need for solving the often complex Markov chain required in GC schemes, thus, making the proposed MPr scheme simple and efficient for implementation. This is essential in handling multiple traffic types with potentially different QoS requirements. In addition, the MPr scheme is adaptive in that it can dynamically adjust the number of reserved channels for the handoff according to the periodical measurement of the traffic status within a local cell, thus completely eliminating the signaling overhead for status information exchange among cells mandated in most existing channel allocation schemes. Numerical results and comparisons are given to illustrate the tradeoff

Published in:

Wireless Communications, IEEE Transactions on  (Volume:1 ,  Issue: 3 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.