Cart (Loading....) | Create Account
Close category search window
 

Structural assessment of a tissue engineered scaffold for bone repair

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Laurencin, C.T. ; Dept. of Chem. Eng., Drexel Univ., Philadelphia, PA, USA ; Borden, M. ; Attawia, M. ; El-Amin, S.

The limitations of current grafting materials have driven the search for synthetic alternatives to cancellous bone. A variety of biodegradable polymer foams composed of poly(lactide-co-glycolide) [PLAGA] have been evaluated for such uses. However, structural limitations may restrict the clinical use of these scaffolds. We have developed a sintered microsphere scaffold composed of 85:15 poly(lactide-co-glycolide) with a biomimetic pore system equivalent to the structure of cancellous bone. Analysis of the structural data, indicated that the microsphere matrix sintered at a temperature of 160°C with a microsphere diameter of 355-425 μm resulted in a optimal, biomimetic structure with an approximate pore diameter of 75 to 275 μm, 35% porosity, and a compressive modulus of 272 MPa. The in vitro evaluation of human osteoblasts on the sintered matrix indicated that the structure was capable of supporting the attachment and proliferation of the cells throughout its pore system. Immunofluorescent staining of actin showed that the cells were proliferating 3-dimensionally through the pore system. The stain for osteocalcin showed that the cells had maintained the phenotypic expression for this bone specific protein. Through this work, it was shown that an osteoconductive PLAGA scaffold with a pore system equivalent to the structure of cancellous bone could be fabricated through the sintered microsphere method.

Published in:

Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference of the IEEE  (Volume:3 )

Date of Conference:

2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.