Cart (Loading....) | Create Account
Close category search window
 

Implementation of scalable power and area efficient high-throughput Viterbi decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gemmeke, T. ; Dept. of Electr. Eng. & Comput. Syst., Aachen Inst. of Technol., Germany ; Gansen, M. ; Noll, T.G.

Today's data reconstruction in digital communication systems requires designs of highest throughput rate at low power. The Viterbi algorithm is a key element in such digital signal processing applications. The nonlinear and recursive nature of the Viterbi decoder makes its high-speed implementation challenging. Several promising approaches to achieve either high throughput or low power have been proposed in the past. A combination of these is developed in this paper. Additional new concepts allow building a signal-flow graph suitable for the design of high-speed Viterbi decoders with low power. Using a flexible datapath generator facilitates the essential quantitative optimization from architectural down to physical level to fully exploit the low-power and high-speed potential of a given technology. With parameterizable design entry, this datapath generator establishes the basis of a scalable platform-based design library. Altogether, this allows coverage of the range of today's industrial interest in high throughput rates, from 150 Msymbols/s up to 1.2 Gsymbols/s using conventional CMOS logic. The features of two exemplary Viterbi decoder implementations prove the benefit of this physically oriented design methodology in terms of speed and low power, when compared to other leading edge implementations

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.