By Topic

A CMOS monolithic ΔΣ-controlled fractional-N frequency synthesizer for DCS-1800

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
De Muer, B. ; Dept. Elektrotechniek, Katholieke Univ., Leuven, Heverlee, Belgium ; Steyaert, M.S.J.

A monolithic 1.8-GHz ΔΣ-controlled fractional-N phase-locked loop (PLL) frequency synthesizer is implemented in a standard 0.25-μm CMOS technology. The monolithic fourth-order type-II PLL integrates the digital synthesizer part together with a fully integrated LC VCO, a high-speed prescaler, and a 35-kHz dual-path loop filter on a die of only 2×2 mm2. To investigate the influence of the ΔΣ modulator on the synthesizer's spectral purity, a fast nonlinear analysis method is developed and experimentally verified. Nonlinear mixing in the phase-frequency detector (PFD) is identified as the main source of spectral pollution in ΔΣ fractional-N synthesizers. The design of the zero-dead zone PFD and the dual charge pump is optimized toward linearity and spurious suppression. The frequency synthesizer consumes 35 mA from a single 2-V power supply. The measured phase noise is as low as -120 dBc/Hz at 600 kHz and -139 dBc/Hz at 3 MHz. The measured fractional spur level is less than -100 dBc, even for fractional frequencies close to integer multiples of the reference frequency, thereby satisfying the DCS-1800 spectral purity constraints

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 7 )