By Topic

A fourth-order bandpass Δ-Σ modulator using second-order bandpass noise-shaping dynamic element matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. Ueno ; Corporate Res. & Dev. Center, Toshiba Corp., Kawasaki, Japan ; A. Yasuda ; T. Yamaji ; T. Itakura

This paper describes a multibit bandpass ΔΣ modulator (DSM) for a frequency-interleaved analog-to-digital (A/D) converter (ADC). A frequency-interleaved ADC using low oversampling ratio (OSR) DSMs is an attractive approach for broadband and high resolution A/D conversion. A multibit DSM is suitable for low-oversampling operation; however, the overall resolution of a multibit DSM is restricted by the accuracy of the internal D/A converter (DAC). Some methods have been reported for improving the internal DAC accuracy of a low-pass DSM, but no bandpass-shaping technique applicable to a bandpass DSM has been implemented, although some methods have been proposed by using simulation. This paper proposes a multibit bandpass DSM with bandpass noise-shaping dynamic element matching (BPNSDEM), which enables bandpass shaping to mismatch error of the internal DAC, and presents its implementation. The modulator was implemented in a 0.25-μm CMOS technology. It operates at a 2.5-V power supply and achieves a signal-to-noise ratio of 77.4 dB over a 250-kHz bandwidth centered at 566 kHz

Published in:

IEEE Journal of Solid-State Circuits  (Volume:37 ,  Issue: 7 )