Cart (Loading....) | Create Account
Close category search window
 

Automatic segmentation of moving objects in video sequences: a region labeling approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsaig, Y. ; Dept. of Comput. Sci., Tel Aviv Univ., Israel ; Averbuch, A.

The emerging video coding standard MPEG-4 enables various content-based functionalities for multimedia applications. To support such functionalities, as well as to improve coding efficiency, MPEG-4 relies on a decomposition of each frame of an image sequence into video object planes (VOP). Each VOP corresponds to a single moving object in the scene. This paper presents a new method for automatic segmentation of moving objects in image sequences for VOP extraction. We formulate the problem as graph labeling over a region adjacency graph (RAG), based on motion information. The label field is modeled as a Markov random field (MRF). An initial spatial partition of each frame is obtained by a fast, floating-point based implementation of the watershed algorithm. The motion of each region is estimated by hierarchical region matching. To avoid inaccuracies in occlusion areas, a novel motion validation scheme is presented. A dynamic memory, based on object tracking, is incorporated into the segmentation process to maintain temporal coherence of the segmentation. Finally, a labeling is obtained by maximization of the a posteriori probability of the MRF using motion information, spatial information and the memory. The optimization is carried out by highest confidence first (HCF). Experimental results for several video sequences demonstrate the effectiveness of the proposed approach

Published in:

Circuits and Systems for Video Technology, IEEE Transactions on  (Volume:12 ,  Issue: 7 )

Date of Publication:

Jul 2002

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.