By Topic

Predicting the performance of wide area data transfers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vazhkudai, S. ; Div. of Math. & Comput. Sci., Argonne Nat. Lab., IL, USA ; Schopf, J.M. ; Foster, I.

As Data Grids become more commonplace, large data sets are being replicated and distributed to multiple sites, leading to the problem of determining which replica can be accessed most efficiently. The answer to this question can depend on many factors, including physical characteristics of the resources and the load behavior on the CPUs, networks, and storage devices that are part of the end-to-end path linking possible sources and sinks. We develop a predictive framework that combines (1) integrated instrumentation that collects information about the end-to-end performance of past transfers, (2) predictors to estimate future transfer times, and (3) a data delivery infrastructure that provides users with access to both the raw data and our predictions. We evaluate the performance of our predictors by applying them to log data collected from a wide area testbed. These preliminary results provide insights into the effectiveness of using predictors in this situation.

Published in:

Parallel and Distributed Processing Symposium., Proceedings International, IPDPS 2002, Abstracts and CD-ROM

Date of Conference:

15-19 April 2001